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ANALYSIS OF NON-OVERLAPPING DOMAIN 
DECOMPOSITION ALGORITHMS WITH INEXACT SOLVES 

JAMES H. BRAMBLE, JOSEPH E. PASCIAK, AND APOSTOL T. VASSILEV 

ABSTRACT. In this paper we construct and analyze new non-overlapping do- 
main decomposition preconditioners for the solution of second-order elliptic 
and parabolic boundary value problems. The preconditioners are developed 
using uniform preconditioners on the subdomains instead of exact solves. They 
exhibit the same asymptotic condition number growth as the corresponding 
preconditioners with exact subdomain solves and are much more efficient com- 
putationally. Moreover, this asymptotic condition number growth is bounded 
independently of jumps in the operator coefficients across subdomain bound- 
aries. We also show that our preconditioners fit into the additive Schwarz 
framework with appropriately chosen subspace decompositions. Condition 
numbers associated with the new algorithms are computed numerically in sev- 
eral cases and compared with those of the corresponding algorithms in which 
exact subdomain solves are used. 

1. INTRODUCTION 

In this paper, we consider the solution of the discrete systems of equations which 
result from finite element or finite difference approximation of second order elliptic 
and parabolic boundary problems. To effectively take advantage of modern parallel 
computing environments, algorithms must involve a large number of tasks which 
can be executed concurrently. Domain decomposition preconditioning techniques 
represent a very effective way of developing such algorithms. The parallelizable 
tasks are associated with subdomain solves. 

There are two basic approaches to the development of domain decomposition 
preconditioners. The first is the so-called non-overlapping approach and is charac- 
terized by the need to solve subproblems on disjoint subdomains. Early work was 
applicable to domains partitioned into subdomains without internal cross-points 
[1], [4], [14]. To handle the case of cross-points, Bramble, Pasciak and Schatz in- 
troduced in [5] algorithms involving a coarse grid problem and provided analytic 
techniques for estimating the conditioning of the domain decomposition boundary 
preconditioner, a central issue in the subject. Various extensions of these ideas were 
provided in [23] including a Neumann-Dirichlet checkerboard like preconditioner. 
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Subsequently, these techniques were extended to problems in three dimensions in [8] 
and [15]. A critical ingredient in the three dimensional algorithms was a coarse grid 
problem involving the solution averages developed in [6]. Related work is contained 
in [13], [20], [21]. 

The papers [4], [5], [6], [7], and [8] developed domain decomposition precondi- 
tioners for the original discrete system. The alternative approach, to reduce to an 
iteration involving only the unknowns on the boundary, was taken in [1], [11], [13], 
and [21]. The difference in the two techniques is important in that for the first, it 
is at least feasible to consider replacing the subproblem solves by preconditioners. 

The second approach for developing domain decomposition preconditioners in- 
volves the solution of subproblems on overlapping subdomains. For such methods it 
is always possible to replace the subproblem solution with a preconditioning eval- 
uation [9]. However, in parallel implementations, the amount of inter-processor 
communication is proportional to the amount of overlap. These methods lose some 
efficiency as the overlap becomes smaller [17]. Theoretically, they are much worse in 
the case when there are jumps in coefficients (see, Remark 3.3 below). In contrast, 
the convergence estimates for correctly designed non-overlapping domain decompo- 
sition algorithms are the same as those for smooth coefficients as long as the jumps 
align with subdomain boundaries. 

Thus, it is natural to investigate the effect of inexact solves on non-overlapping 
domain decomposition algorithms. Early computational results showing that inex- 
act non-overlapping algorithms can perform well were reported in [18]. References 
to other experimental work can be found in [16]. Analysis and numerical exper- 
iments with inexact algorithms of Neumann-Dirichlet and Dirichlet types, under 
the additional assumption of high accuracy of the inexact solves, were given in [2] 
and [19]. Their analysis suggests that the inexact preconditioners do not, in gen- 
eral, preserve the asymptotic condition number behavior of the corresponding exact 
method, even when the forms providing the inexact interior solves are uniformly 
equivalent to the original. 

In this paper, we construct and analyze new non-overlapping domain decom- 
position preconditioners with inexact solves. We provide variations of the exact 
algorithm considered in [6]. We develop algorithms based only on the assumption 
that the interior solves are provided by uniform preconditioning forms. The inexact 
methods exhibit the same asymptotic condition number growth as the one in [6] and 
are much more efficient computationally. Our algorithms are alternatives to and 
in many applications less restrictive than the preconditioners in [2] and [19]. The 
convergence estimates developed here are independent of jumps of the operator co- 
efficients across subdomain boundaries. The results of this paper were reported by 
the second author at the Seventh Copper Mountain Multigrid Conference in April 
of 1995 and by the third author at the Ninth Conference on Domain Decomposition 
Methods in June of 1996. 

An important aspect of the analysis provided in this paper is that the non- 
overlapping preconditioners are shown to be of additive Schwarz type. Even though 
the new methods are inspired by and implemented according to the classical non- 
overlapping methodology, they can be reformulated as additive Schwarz algorithms 
with appropriately chosen subspace decompositions. 

The paper is organized as follows. In Section 2, we formulate the problem and 
introduce notation. In Section 3, we construct an inexact non-overlapping domain 
decomposition preconditioner and investigate its properties. Section 4 provides an 
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application of our preconditioning approach to discretizations of parabolic prob- 
lems. Computational copsiderations concerning the preconditioners are given in 
Section 5. Section 6 considers alternative inexact preconditioners. Finally, the 
condition number of the preconditioners developed in Section 3 and Section 6 are 
computed in several cases and presented in Section 7. 

2. PRELIMINARIES AND NOTATION 

In this section we formulate a model elliptic problem and introduce the corre- 
sponding finite element discretization. We also outline the guiding principles in 
constructing our preconditioner. 

We consider the Dirichlet problem 

Lu= f in Q, 
(2.1) u=O on&Q, 

where Q is a bounded polyhedral domain in R' for n 2,3 and 

(2.2) Lv - a - ) - 

Here the n x n coefficient matrix {a.i} is symmetric, uniformly positive definite, 
and bounded above on Q. This is a classical model problem for a second order 
uniformly elliptic equation. Generalizations of (2.2) which are needed for time 
stepping schemes approximating parabolic problems will be discussed in Section 4. 

The generalized Dirichlet form on Q is given by 

(2.3) A(v,w) l ai 0 dx. 
a9xia0xi 

Clearly, this form is well defined for functions v and w in the Sobolev space H1 (Q). 
The L2 (Q)-inner product and the related norm are defined by 

(V,W)Q = jvw dx 

and- 

IIVI12 = (V, V)Q. 

Ho (Q) is the Sobolev space obtained by the completion of smooth functions with 
support in Q with respect to the norm in H1(Q). The weak formulation of (2.1) in 
Ho (Q) is then given by the following. 

Find u C Ho (Q) such that 

(2.4) A(u, p) (f,(p)Q for all So C Ho(Q). 

Given a finite dimensional subspace So (Q) of Ho (Q), the standard Galerkin ap- 
proximation to (2.4) is defined by: 

Find U C Sh(Q) such that 

(2.5) A(U,So) = (f, (p)Q for all bo ESh (Q) . 

To define So (Q), we partition Q into triangles { rjh } (or tetrahedra) in the usual 
way. Here h is the mesh parameter and is defined to be the maximal diameter of all 
such triangles. By definition, these triangles are closed sets. We assume that the 
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triangulation is quasi-uniform. The collection of simplex vertices will be denoted 
by {xi}. 

By convention, any union of elements Ty in a given triangulation will be called a 
mesh subdomain. In the sequel Q is assumed partitioned into nd mesh subdomains 

{Ik}knl of diameter less than or equal to d. The notation Qk will be used for the 
set of all points of a subdomain including the boundary 0Qk. 

We now define the finite element spaces. Let Sh(Q) be the space of continuous 
piecewise linear (with respect to the triangulation) functions that vanish on &Q. 
Correspondingly, S (Ak) will be the space of functions whose supports are contained 
in Qk and hence each function in S (Qk) vanishes on 0Qk. Sh(Qk) will consist of 
restrictions to Qk of functions in Sh(Q). Let F denote Uk 0Qk and let Sh(F) and 
Sh(0&Qk) be the spaces of functions that are restrictions to F and 0Qk, respectively, 
of functions in Sh(Q). We consider piecewise linear functions for convenience since 
the results and algorithms to be developed extend to higher order elements without 
difficulty. However, application to h-p methods is beyond the scope of this paper. 

The following additional notation will be used. Let the L2(0&Qk)-inner product 
be denoted by 

(U,V)a0Q = j uv ds 
aQk 

and the corresponding norm by 

|Vl = (V, V) 1k2 

On Sh(&0k), the discrete inner product and norm are defined by 

(UU)V)Q,,h = hnI E u(xi)v(Xi) 
XiE&Qk 

and 

|V'OQk,h =(V, vQk,h 

Because of the mesh quasi-uniformity, the norm equivalence 

(2.6) C 
2V12 

< 
|V12 

? C IV12 &Qk & Qk,h - ak 

holds for function v E Sh(09Qk). 
Here and in the remainder of the paper, we shall use c and C to denote generic 

positive constants independent of discretization and subdivision parameters such 
as h, nd, and subdomain index k. The actual values of these constants will not 
necessarily be the same in any two instances. 

Finally, Dk(,) denotes the Dirichlet inner product on Qk defined by 

(2.7) Dk(v,w) = E dx, for all v, w E H1(Qk). 

ilf k a9xi 09, 
The development of a method for efficient iterative solution of (2.5) is the subject 

of this paper. In particular, using the above described decomposition of Q, we shall 
define a bilinear form B(., -) on So (Q) x So (Q) which satisfies the following two 
basic requirements. First, the solution W E SO(Q) of 

(2.8) B(W, Sp) = (g, (p)Q for all Sp E Sh (Q) 
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with g given, should be more efficient to compute than the solution of (2.5). Second, 
the two forms should be equivalent in the sense that 

(2.9) A113(V, V) < A(V, V) < A213(V, V) for all V ES(Q), 

for some positive constants A1 and A2 with A2/A1 not too large. These conditions, 
though somewhat vague, serve as guidelines for our construction. 

3. THE PRECONDITIONER 3(., .) AND ITS ANALYSIS 

In this section we construct an inexact non-overlapping domain decomposition 
preconditioner and prove an estimate for the condition number of the precondi- 
tioned system. We also show that our preconditioner is of additive Schwarz type 
with appropriately defined subspace decomposition. 

3.1. The preconditioner. To define our domain decomposition preconditioner, 
we will need boundary extension operators. For each k, let us define linear extension 
operators k: Sh(0Qk) -* Sh(Qk) by 

- =fq$(xi) for xi C 0Qk, 
-0 for xi E Qk \ &Qk 

Correspondingly, let E: Sh(Q) --* Sh(Q) be defined by 

(3.1) O?>( ) {?f(xi) for xi C F, 
0 for xi C Q \IF. 

Clearly, defining these operators at the mesh vertices defines them everywhere. 
For each k, let Bk(,) be a bilinear form on So(Qk) X Sh(Qk) which is uniformly 

equivalent to Ak(, ) where Ak(-,) is defined as in (2.3) but with integration only 
over Qk. By this we mean that for each k there are constants Ck and Ck with Ck/Ck 

bounded independently of h and d such that 

(3.2) CkIk(V,V) < Ak(V,V) < Ck3k(V,V) for all V E SO(Qk). 

The preconditioning form is given by 
nd 

B(U, V) ZL3k(U - Uk - Sk(U - Uk), V - Vk- - Sk(V -Vk)) 

(3.3) k=1 

+ h1 Eak(U - Uk,1 Vk)OQk,h. 

k=1 

Here, Uk denotes the discrete mean value of U on 0Qk, i.e., 

-k (U, 1)aQk,h 

(1, 1)aQk,h 

In (3.3), eLk, k = 1,... ,nd, are parameters associated with the coefficients ai- in 
Qk. For example, if alk is taken to be the smallest eigenvalue of { aij} at some point 
X EE Qk, then 

(3.4) CkI&kDk(V,V) < Ak(V,V) < Ck&kDk(V,V) for all v E Sh(Qk). 

The constant Ck only depends on the local variation of the coefficients {aij } on the 
subdomain Qk. Consequently, we will assume that (3.4) holds with Ck bounded 
independently of d, h, and k. 
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3.2. Analysis of the preconditioning form 13(, .). We introduce some standard 
assumptions about the domain Q, the subdomain splitting and the associated finite 
element spaces which are needed for the analysis. 

We start by requiring that the collection {Qk} be quasi-uniform of size d. Also, 
we shall assume that 

(3.5) IU1Q < C{1 IIUI12k + EDk(U,U)} 

holds for any c in (0, d] and all k. Finally, we assume that a Poincare inequality of 
the form 

(3.6) lVI12k < Cd 2Dk(V, V) 

holds for functions v with zero mean value onQk 
The inequalities (3.5) and (3.6) hold for all but pathological subdomains. A 

sufficient but by no means necessary condition for the above two inequalities is 
given in the following assumption. 

Each Qk is star-shaped with respect to a point. This means that for each Qk 

there is a point xk and a constant Ck > 0 such that (x - Xk) - n(x) > ckd for all 
X E 0Qk which are not mesh vertices. We further assume that Ck > c for some 
constant c not depending on d, k or h. Here n(x) denotes the outward unit normal 
vector to 0Qk at a nonvertex point x. 

The following lemma will be used in the derivation of our results. 

Lemma 3.1. If v E Sh(Qk) and vanishes at all interior nodes of Qk, then 

(3.7) Dk(v,v) < Ch' IV12 

This lemma is obvious from the local properties of the functions in finite element 
spaces and we shall omit its proof. 

The main result of this paper is contained in the following theorem. 

Theorem 3.1. Let A(., ) and 13(-, ) be given by (2.3) and (3.3) respectively. As- 
sume that (3.2), (3.4), (3.5) and (3.6) hold. Then there exist positive constants c 
and C not depending on d or h such that 

(3.8) cA(V, V) < 1S(V, V) < C-A(V, V), 

for all V E Sh(Q). 

Proof. Because of (3.2), it suffices to prove the theorem for 
nd 

3(U, V) S Ak(U-U-k -k(U Uk ),V -Vk -5k(V-Vk-)) 

(3.9) k=1 

+ h- ak ( U - Uk, v - Vk) aQ, h 

k=1 

We first prove the left inequality in (3.8). The arithmetic-geometric mean in- 
equality shows that for any constant ae we have 

1 1 
2Ak(V, V) = 2Ak(V-, v-) 

(3.10) < Ak(V-oa- k(V- a), V-oa-S(V- a)) 

+ Ak Vk(V - a), 'k(V - s). 



ANALYSIS OF NON-OVERLAPPING DOMAIN DECOMPOSITION ALGORITHMS 7 

The left inequality in (3.8) is a simple consequence of (3.7), (3.4), (3.10), and the 
definition of ?k with a- Vk. 

In order to prove the right inequality, we apply the arithmetic-geometric mean 
inequality to the terms in the first sum in (3.9) and get 

nd 

B(V, V) < 2A(V, V) + 2 Ak (Sk (V-Vk ), Sk (V-Vk-)) 

(3.11) nd k=1 

+ h1 E akV - Vk, V - Vk)aQk,h- 

k=1 

By (3.4) and (3.7), we obtain 
nd 

(3.12) B(V, V) < 2A(V, V) + Ch- > ak(V-Vk, V-Vk)aok,h 
k=1 

Let Vk be the mean value of V on Qk. Using the definition of Vk yields 

(V-Vk, V - Vk)&Qk,h ? (V-Vk, V - Vk)aQk,h. 

We combine the above inequality with (2.6) and obtain 

V-Vk j,Qkh < C V-Vk 2 
aQk 

Applying (3.5) with e = d and (3.6) to the right hand side of the last inequality 
gives 

(3.13) IF-V_ w 
- 

12 < CdAk(V, V). 

Using this estimate in (3.12) proves (3.8). E 

Remark 3.1. The preconditioning form 3(.,) defined above is not uniformly equiv- 
alent to A(., .). Nevertheless, its preconditioning effect is very close to that of a 
uniform preconditioner for many practical problems, particularly in three space di- 
mensions. The number of subdomains often equals the number of processors in a 
parallel implementation and it is feasible to keep d on the order of h1/2. Applying 
a conjugate gradient method preconditioned by B(., -) for solving (2.5) would result 
in -a number of iterations proportional to h-1/4. In R3, h - 10-2 corresponds to a 
very large computational problem whereas 101/2 1 3.2. 

Remark 3.2. The constants c and C in (3.8) depend on the local (with respect to 
the subdomains) behavior of the operator and the preconditioner. Clearly, one 
of the most influential factors on the local properties of A(-, ) and B(., ) is the 
coefficient matrix {ai,j}JQ,. In fact, the constants Ck in (3.4) depend on the local 
lower and upper bounds for the eigenvalues of }aij JQ, and in general so do the 
constants Ck and Ck in (3.2). Therefore, in applications to problems with large 
jumps in the coefficients, it is desirable to align the subdomain boundaries with the 
locations of the jumps. In this case the preconditioner (3.3) will be independent of 
these jumps. 

Remark 3.3. It is well known that classical overlapping domain decomposition al- 
gorithms with small overlap exhibit the same condition number growth but in 
contrast to our method the overlapping preconditioners are adversely sensitive to 
large jumps in the operator coefficients. The utilization of the averages Uk plays the 
role of a coarse problem especially designed to take into account cases with interior 
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subdomains and also applications with large jumps in the operator coefficients pro- 
vided that the locations of the jumps are aligned with the subdomain boundaries. 
The numerical calculations in Section 7 indicate the effectiveness of our precondi- 
tioner when such problems are solved. To illustrate that the role of the averages is 
essential in overcoming difficulties coming from large jumps of the coefficients, we 
consider a conventional additive Schwarz preconditioner with minimal overlap [17]. 
The asymptotic condition number bound provided in [17] is the same as that of our 
theorem in the case of smooth coefficients. However, because of the deterioration 
in the approximation and boundedness properties of the weighted L2 projection 
into the coarse subspace [12], the condition number of the preconditioned system 
for the minimal overlap algorithm when n = 3 can only be bounded by (d/h)2. 

Remark 3.4. It is possible to apply the above preconditioner to the discrete sys- 
tems which arise from other types of numerical approximation. For example, it 
is straightforward to apply the technique to finite difference approximations.. In 
addition, its application to non-conforming finite element discretizations as well as 
mixed finite element approximations is given in [22]. 

Our preconditioner is very economical computationally. In fact, it allows the 
use of efficient subdomain preconditioners such as one multigrid V-cycle. The use 
of the simple extension S also results in enhanced efficiency. We shall discuss the 
computational aspects of this algorithm in detail in the Section 5. 

3.3. An additive Schwarz reformulation of the domain decomposition 
algorithm. We shall demonstrate that the preconditioner 13(., ) can be viewed as 
an additive subspace correction method (cf. [10] and [24]) with judiciously chosen 
subspaces. Let the linear operator E: Sh(Q) --* Sh(Q) be defined by 

nd 

?V = EV + (Vk-SkVk). 
k=1 

Furthermore, define 

S(Q) = {V E Sh(Q) I v = onF} 
and 

Sr(Q) = f{v I v E So(Q)} 

It is immediate that Sh(Q) and Sr(Q) provide a direct sum decomposition of Sh(Q). 
The additive Schwarz preconditioner applied to g E So (Q) based on the above 

two spaces results in a function Y = Yo + Yr where Yo E Sk(Q) satisfies 

(3.14) Bo(Yo, b) (g, ), for all X E Sh(Q) 

and Yr E Sr(Q) satisfies 

(3.15) Br (Yr, ) (g,q), for all 0 E Sr(Q). 

Here l3o(., ) and 13r(,-) are symmetric and positive definite bilinear forms. 
We shall see that the preconditioner in (3.3) is equivalent to the additive Schwarz 

method above when 
nd 

(3.16) 13o ((o 0 E t3k (, 

k=1 
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and 
nd 

(3.17) Br( h1, q) =hl ,kK(p-(k,qX-5k)aQk,h 
k=1 

Indeed, let W be the solution of (2.8). Then 

(3.18) B(3V,p) =3k(W(, I(p) = (g, 0)Q, for all C E So(Qk), 

where W(k) _ W-Wk - Sk(W - W). It follows that the function Yo satisfying 
(3.14) (with 13o(,*) given by (3.16)) can be written 

Yo=W-SW on Qk. 

Taking So =V in (2.8) shows that for 13pr( ) given by (3.17), 

13r (WI gV) =(9, I V) 

Thus, Yr= W on F. From the definition of Sr(Q) it follows that Yrp SW, 
i.e, W = Y0 + Yr. Thus, the solution W of (2.8) is the result of the additive 
Schwarz algorithm with subspace decomposition given by Sh(Q) and Srp(Q) with 
forms defined by (3.16) and (3.17). 

4. APPLICATION TO PARABOLIC PROBLEMS 

Our preconditioning approach can be extended to more general bilinear forms of 
the type 

n &v Ow 
A(v,w) = 6&E aij -) dx + ($, w)I 

Such forms arise from implicit time-stepping numerical approximations of parabolic 
problems. In such settings 6 is related to the time step and is usually small. We 
shall consider the case when ch2 < 6 < Cd2. 

We define our preconditioner 13(.,) by 
nd v nd 

8(V, W) = 
E 8k (V-EkV, W-'kW)+-h Z(W, V)oQk,h, 
k=1 k=1 

where 1k(,.) are the subdomain preconditioning forms satisfying (3.2). Note that 
the above form no longer includes the average values on the subdomain boundaries. 

It is easy to see that 

A(v, v) < 2[A(v -Ev, v -Ev) + A(Ev, Ev)] 

(nd ndA 

(4.1) <C {Ef k(V- kV,V -SkV) + (h+-h) (VV))Qk h 

k=1 k=1 

< CB(v, V). 

Moreover, applying (3.5) gives 

-(v,V)aWk,h ?< C- (VI(v)Qk +EDk(V,V)> 

Choosing e = max(61/2, d) in the last inequality yields 

(4.2) K(V,V)aOk,h <?C h1/k(V,V) 

h ~~~h 



10 JAMES H. BRAMBLE, JOSEPH E. PASCIAK, AND APOSTOL T. VASSILEV 

Using (4.2) for each k as in the proof of Theorem 3.1, we obtain 

61/2 
(4.3) B3(v,v) < C h A(v,v), 

Combining (4.1) and (4.3) shows that 

(4.4) cA(v,v) < B(v,v) < C? A(v,v) for all v E So(Q). h V 

The resulting condition number depends on 6 in a natural way. Smaller time 
steps correspond to better conditioning. Obviously, the preconditioner would be 
uniform if 6 = h2 but such time stepping is too restrictive for the vast majority 
of applications. On the other hand, 6 = h corresponds to a very reasonable time- 
stepping scheme whose condition number is governed by h- 1/2. Again, although 
not uniform, such rate of growth is often acceptable in practice for reasons already 
mentioned. 

5. COMPUTATIONAL ASPECTS OF THE PRECONDITIONING PROBLEM 

In this section, we provide an algorithm for applying the preconditioning operator 
correspnding to the form B(., .). This consists of two main steps, solution of the 
approximate subdomain problems and inversion of the boundary form. As we shall 
see, these steps are independent and can be carried out in parallel. 

5.1. The domain decomposition algorithm. The action of the preconditioner 
corresponding to B(., ) is obtained by computing the solution of (2.8) for a given 
g. The first step involves the computation of W(k) E S'(Qk) satisfying (3.18) 
and reduces to the solution of subdomain preconditioning problems which can be 
performed in parallel. 

The second step involves the solution of a problem on F which we shall now 
describe. For b E SO(Q) set E = O. Notice that k = on Qk, (sO)k 'Ok, 
and E2 =k4. For this choice of p, (2.8) becomes 

nd 

3(W,<) 113k (W - Wk - k (W - Wk), Sk'k - k-k) 

(5.1) k=1 

+ h1 E akKW - WkP)aQk,h = (gi -O)Q- 
k=1 

Here we have used the fact the W - Wk has zero discrete mean value on &Qk and 

therefore is orthogonal to constants with respect to the inner product on 9Qk. 

Since EkV'k -'k vanishes on 9Qk, 
nd nd 

E 3k (W - Wk - Sk(W - Wk),Skiik - 'Ok) (g, kok Ok)Qk 

k=1 k=1 

and hence 
nd nd 

(5.2) h1 EakKW- Wk,Q, = (g,: ()Q - (g,gk-k f k)Qk. 
k=1 k=1 

Notice that because of the explicit extensions used in the definition of B(., ), the 

setup of the right hand side in (5.2) involves minimal computational cost. Clearly, 
this step is independent of the previous one and thus the procedure solving the 

preconditioning problem with B(., ) given by (3.3) decouples into two independent 
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tasks. Once W(k) and W p are known then the assembly of the solution in Q is 
easy. The actual implementation of the solution procedure for (5.2) is an important 
issue for the overall computational efficiency of the proposed preconditioner. We 
shall give a detailed description how to solve this problem in the next subsection. 

The above discussion can be summarized in the following algorithm. 

Algorithm 5.1. Solve the preconditioning problem (2.8) by 

(1) Compute the solution W(k) of (3.18) for each k. 
(2) Compute the trace of W on F from (5.2). 
(3) The solution of (2.8) is given by 

nd 

W = SW ?(W(k) ?Wk -SkWk). 
k=1 

5.2. The algorithm for inverting the boundary form. In this subsection 
we describe the algorithm for solving (5.2). As it was observed in the previous 
subsection (this applies also to Section 5 below), the algorithm for inverting the 
preconditioner (3.3) requires an efficient method for determining the averages Wk 
and finding the solution to (5.2). The implementation details of this method are 
described below. The algorithm for solving (5.2) was originally developed in [6] and 
it is included here for completeness. 

We start by observing that the solution of (5.2) is trivial provided that Wk is 
known for each k. In fact, the resulting matrix is diagonal using the usual nodal 
basis for Sh(F) and thus inverting it is straightforward. Therefore, we only have to 
describe how to solve for Wk. 

For e 1,... , nd, let be be the unique function in Sh(F) which satisfies 
nd 

(5.3) h-1 E Z kKV, gV/)aQk,h = Ve, for all V C Sh(]F). 
k=1 

That such functions are uniquely defined follows from the Riesz Representation 
Theorem. Substituting be in (5.2) gives 

nd . And 

(5.4) h-1 W-f akWk ,+ )0')aQk (g, )Q - Z(g 8kk- )Qk 
k=1 k=1 

Setting W = [W1,.. , Wnd]T, (5.4) can be rewritten in a matrix form as 

(5.5) MW = G. 

It was observed in [6] that the matrix M is symmetric and irreducibly diago- 
nally dominant and hence positive definite. Thus (5.4) is solvable. One efficiently 
implements the above algorithm by explicitly computing the functions {fbe}. We 
illustrate this construction in the case when the operator L: from (2.2) is the Lapla- 
cian in two spatial dimensions and ak = 1, k = 1,... , nd. To do this we need to 
define some additional notation. The nodes on F \ &Q that are shared by exactly 
m subdomains will be called m-edge nodes. For example, in the picture shown in 
Fig. 5.1, all nodes on F \ &Q but node E are 2-edge nodes. Node E of this example 
is a 4-edge node. With this terminology in mind, we define of by 

(5.6) -pe(xi) = { ?jeI if xi C &Qe \ &Q and xi is an mn-edge, 
- mN, elsewhere. 



12 JAMES H. BRAMBLE, JOSEPH E. PASCIAK, AND APOSTOL T. VASSILEV 
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FIGURE 5.1. A simple example with four subdomains. 

Here Ne is the number of nodes on &Qe. For the example shown in Fig. 5.1, there 
will be four such basis functions. The function associated with the first subdomain 
is 01 such that g1(E) = 1/(4N1); /1 _ 1/(2N1) at all remaining nodes on the 
edges AE and EC, the points A and C excluded; 1/_ 0 on the edges AO1, O1C, 
and everywhere in the exterior and interior of Ql. 

This approach to solving the problem for the averages extends to three dimen- 
sional problems as well as the case when ak + 1. The reader is referred to [6] for 
further details. 

6. ALTERNATIVE ADDITIVE PRECONDITIONERS WITH INEXACT SOLVES 

In this section, we consider a classical technique for developing non-overlapping 
domain decomposition preconditioners. The behavior of such methods has been 
investigated in the case when the boundary form is uniformly equivalent to the 
corresponding Schur complement subsystem [2], [19]. Here, we show that this 
method also reduces to an additive Schwarz preconditioner. In addition, we show 
that the inexact solve technique combined with the boundary form discussed earlier 
provides an effective preconditioner. Indeed, our results are much better than what 
would be expected from the analysis of [2], [19]. 

6.1. Matrix form of the inexact solve domain decomposition algorithm. 
The classical inexact domain decomposition preconditioners are easily understood 
from the matrix point of view. In this case, one orders the unknowns so that the 
stiffness matrix corresponding to A(., ) can be written in a block form as 

(A11 A12 
A21 A22, 

Here A22 corresponds to the nodes on F and A1l to the remaining nodes. With this 
ordering, the form corresponding to a typical domain decomposition preconditioner 
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(e.g., [5],[6j,[7],[8]) has a stiffness matrix of the form 

(AZ A12) 

tA21 ZJ 

where Z = B22 + A21A711A12 and B22 is the domain decomposition boundary 
preconditioning matrix. Computing the inverse of A applied to a vector reduces to 
a three step block Gaussian elimination procedure. 

The classical inexact method is defined by replacing A1l with B1l where B1l is 
another symmetric and positive definite matrix. This defines a new preconditioning 
operator B given by 

(6.1) B 2) 

Here Z is given by Z B22 + A21Bj1'A12. 
Generally, the inexact algorithm may not converge as well as the exact version. 

Even if one takes B22 to be the Schur complement, A22- A21Bj-1A12, the inexact 
preconditioner may perform poorly unless the difference between the two matrices 
B11 and A1l is sufficiently small in an appropriate sense (see Theorem 6.1). 

6.2. The inexact algorithm as a two level additive Schwarz procedure. 
We now show that the inexact preconditioners correspond to additive Schwarz 
methods. The first subspace in this decomposition is Sho(Q). Let B0(.,-) be the 
form on Sh (Q) X Sh(Q) with stiffness matrix B11I The second subspace is given by 

Sh(F) S{?W + Wo I (e So(Q) and Wo e Sk(Q) such that 
(6.2) 

Bo(Wo, -A(Sjo, q), for all q E S?(Q)}. 

Clearly, the functions in sh(F) are completely determined by their traces on F. 
Let Br(+,-) be the form on sh(F) X Sh(F) with stiffness matrix B22. B1p(u,v) 
only depends on the boundary nodal values of u and v and is thus defined on 
Sh(Q) x SO(Q) by restriction. 

Clearly, Sh(Q) and sh(F) provide a direct sum decomposition of So (Q). This de- 
composition is tied strongly to the bilinear form Bo(., .). In particular, if B0(.,.) 
WA(-,-) on Sh(Q) x Sh(Q), then the space Sh(F) consists of discrete harmonic func- 
tions and the decomposition is A(., .)-orthogonal. In general, the decomposition is 
not A(., .)-orthogonal. 

6.3. Conditioning estimates for the inexact algorithms. The precondi- 
tioner defined by (6.1) can be restated as an operator B: Sh(Q) F-* Sh(Q). In fact, 
it is a straightforward exercise to check that the block Gaussian elimination proce- 
dure applied to the matrix B of (6.1) corresponds to the preconditioning operator 
defined in the following algorithm. 

Algorithm 6.1. Given g c Sh(Q) we define B-lg = U where U is computed as 
follows: 

(1) Compute Uo C Sh(Q) by solving 

(6.3) Bo(Uo,p) = (g, ) for all W E Sh(Q). 
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(2) Compute the trace Ur on IF by solving 

Br(Ur, Sq)-(g, Sq)- A(Uo, Sq) for all q E Sh(F). 

(3) Compute UFO by solving 

o(UrO,'W) =-A(SUr,p) for all W E Sh(Q). 

(4) Set U = Uo + SUr + Uro. 

Although the above algorithm appears as a multiplicative procedure, we shall 
now demonstrate that it is equivalent to an additive Schwarz method. The problem 
solved in Step (2) of Algorithm 6.1 is independent of Uo. Indeed, for any X Ec Sh(F), 
we decompose X =S$ + qo as in (6.2) and observe 

-A>(S6, Uo) = B(o, Uo) = (g, qo) 

Thus, Steps (2) and (3) of the above algorithm reduce to finding Ur = SUr + Uro E 

Sh(F) such that 

(6.4) Bp (Ur, ) = (g, q) for all X E Sh (F). 

Hence, B-lg = U = Uo + Ur where Uo and Ur satisfy (6.3) and (6.4) respectively, 
i.e., Algorithm 6.1 is an implementation of an additive Schwarz procedure. 

Notice that Algorithm 6.1 avoids the need of knowing explicitly a basis for the 
space sh (F) which could be either a computationally expensive problem or a sig- 
nificant complication of the overall algorithm. Obviously this procedure provides 
inexact variants of the methods given in [5], [6], [7], [8], [14] and [23]. 

Since Sh(Q) and sh(F) give a direct sum decomposition of Sh(Q), the precondi- 
tioning form B(., ) corresponding to the operator defined in Algorithm 6.1 is given 
by 

(6.5) B(V, V) = Bo(Vo, VO) + Br(Vr, Vr). 

Here V = V0 + Vr with Vo E Sh (Q) and Vr E Sh (F) . In the remainder of this section 
we analyze the above preconditioner by providing bounds for (6.5). We take 

nd 

Bo(u,v) = Z k (U,V) 

k=1 

where Bk(,) is defined as in Section 3. 
The first theorem in this section was given by B6rgers [2] and Haase at al. [19] 

and provides a result when B22 is uniformly equivalent to the Schur complement 
A22- A21A-1Al 2. This is the same as assuming that the quadratic form Bp(.,) 
is equivalent to the boundary form with diagonal 

(6.6) inf A(u?+q,u?+q), for allu Sh(F). 
0cSh (Q) 

Theorem 6.1. Let A(., ) be given by (2.3) and B(.,.) by (6.5) respectively. As- 
sume that the quadratic form B[(., -) is uniformly equivalent to the quadratic form 
induced by (6.6). In addition, let -y be the smallest positive constant such that 

(6.7) JA(W, ) -B(W, ') I < yyA(p, <p) for all p E Sk(Q). 
Then 

(6.8) c ( ) (U U) < (U U) < C A(U, U) 
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holds for all U c Sh(Q) with constants c and C independent of d and h. 

Remark 6. 1. Condition (6:7) requires B0(., ) to be a good approximation to A(,.) 
for the preconditioner (6.5) to be efficient. The result of the theorem shows that 
if (6.7) holds with -y on the order of h'/2, then the preconditioner B(,.) is uni- 
form. However, the development of a form B0(.,) satisfying (6.7) usually involves 
significant additional computational work since ty must tend to zero as h becomes 
small. Alternatively keeping -y fixed independent of h may result in a rather ill- 
conditioned method when h is small. There are examples of reasonably accurate 
preconditioners B0(., .), e.g. multigrid V- or W-cycles, which appear to perform 
well when h is not very small (cf. [2]) due to the fact that the corresponding 'y's 
are comparable to h1'2. 

The main result of this section is given in the next theorem. It is for the case 
when 

nd 

(6.9) Bp(u, v) = h- a: kK - Uk,V - Vk)aQk,h, for all u, v C Sh(F). 
k=1 

Theorem 6.2. Let A(-, ) be given by (2.3), B(., -) be given by (6.5), and B3(r,.) 
defined by (6.9). Then 

(6.10) cA(U, U) < B(U, U) < C<-A(U, U) 

holds for all U c So(Q) with constants c and C independent of d and h. 

Remark 6.2. The result of Theorem 6.2 shows that introducing inexact solves in 
the interior of the subdomains does not degrade the overall preconditioning effect 
of the corresponding exact method analyzed in [6]. As we have pointed out in 
Section 3, the adverse effect on the condition number of h approaching zero can be 
compensated easily by adjusting the parameter d. This balance is an alternative 
to (6.7) and could be a better choice when h is small relative to -y. In fact, the 
utilization of the bilinear form (6.9) leads to computationally efficient algorithms, 
unconstrained by accuracy conditions like (6.7). We shall see in Section 7 that 
for this boundary form the differences in the preconditioning effect of the inexact 
(Algorithm 6.1) and exact (cf. [6]) methods are negligible. However, the saving of 
computational time is significantly in favor of Algorithm 6.1. 

We conclude this section with the proof of Theorem 6.2. 

Proof of Theorem 6.2. Because of (6.5), the technique for establishing (6.10) is sim- 
ilar to the one used in the proof of Theorem 3.1. 

Let Ur SUr + UFO as in (6.2) and write U = Uo + Ur. The first inequality in 
(6.10) follows from the arithmetic-geometric mean inequality and the assumptions 
on {k(-, *) } Indeed, we have 

A(U, U) = A(Uo + Ur, Uo + Ur) 
< C (Bo(Uo, Uo) + Bo(Uro Uro) + A(SUr, SUr)) 

If follows from the definition of Uro that 

(6.12) Bo (Uro, Uro) < CA(SUrI, Ur) 

Using (6.12) together with (3.7) and (3.4) in (6.11) yields 

A(U, U) < CB(U, U). 
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To prove the right hand inequality in (6.10), we use again the decomposition of 
U. Thus, 

Bo(Uo, UO) < CA(U - Ur, U - Ur) < C(A(U, U) + A(SUr, SUr)) 
(6.13) < C (A(U, U) + Br(Ur, Ur)). 

Hence, we need to estimate Br(Ur, Ur) from above by A(U, U). Applying the 
reasoning used to show (3.13) in (6.13) gives the desired bound. C: 

7. NUMERICAL EXAMPLES 

In this section we present numerical calculations involving the non-overlapping 
domain decomposition preconditioners developed in Section 3 and Section 5. We 
report results obtained from examples with Algorithm 5.1 and Algorithm 6.1 with 
boundary form given by (6.9). We tested two main aspects of these precondition- 
ers, namely the computational efficiency of the method, in terms of the condition 
numbers obtained, and the independence of the jumps in the operator coefficiients 

{aij}. Comparisons between the inexact algorithms and the corresponding exact 
methods are included as well. 

The numerical results presented in this section are applied to 

(7.1) L:=-V aV, 

where a is a piecewise constant function in Q and constant on each subdomain. 
In all of our calculations Q is the unit cube in three spatial dimensions. The 
subdomains are obtained by subdividing Q into regions by slicing it parallel to the 
coordinate axes. Here we shall consider only cases where the unit cube is split into 
m3 equal sub-cubes, which implies d = 1/m. In the examples below, Sh(Q) is the 
space of piecewise linear functions with respect to a uniform mesh of size h. Also, 
the action of one multigrid V-cycle is used as an inexact solver in the interior of 
the subdomains. 

The multigrid algorithm is variational and based on a trilinear finite element 
approximation. A nested sequence of approximation subspaces is defined by suc- 
cessively doubling the mesh size. For computational efficiency, the fine grid form is 
defined by numerical quadrature utilizing a quadrature which gives rise to a seven 
point operator. The operators on the coarser grids are twenty seven point and 
determined variationally from the fine gird operator. The analysis of variational 
multigrid procedures based on a fine grid operator defined by numerical quadrature 
can be found in [3]. Pointwise forward and backward Gauss-Seidel sweeps are used 
as pre- and post-smoothing iterations respectively. On the coarsest level we apply 
five pairs of forward and backward Gauss-Seidel sweeps. Obviously, if we have only 
one degree of freedom on the coarsest level, then this is equivalent to an exact solve 
on that level. This multigrid procedure results in a symmetric and positive definite 
operator whose action provides an inexact interior solve. The corresponding Bk (, ) 

satisfies (3.2) with uniform constants Ck and Ck for each k. Also, the evaluation 
of the action of this operator is proportional to the number of grid poinlts on the 
mesh used for the discretization of Qk. 

The first cases which we report are intended to confirm numerically the d/h-like 
behavior of the condition number K, established in Theorem 3.1. We consider 
the model problem (2.1) with L _ -A. The results are presented in Table 7.1. 
According to our theory, the condition number K should be bounded if d/h is 
fixed. This is clearly indicated in the computational results of Table 7.1. 
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TABLE 7.1. Condition numbers with the inexact preconditioner (3.3). 

h d =1/3 d =1/6 
1/12 21.46 8.12 
1/24 55.70 23.20 
1/48 131.19 59.33 

TABLE 7.2. Condition numbers with the inexact preconditioner (3.3); d = 1/4. 

h Variable a a_ 1 
1/12 15.71 13.87 
1/24 42.94 39.79 
1/48 106.76 95.38 

TABLE 7.3. Comparison of the inexact and the exact methods; d = 1/3. 

h _ Kexact K-Algorithm 5.1 K-Algorithm 6.1 
1/6 6.27 6.73 6.27 

1/12 15.23 21.96 15.40 
1/24 32.55 57.01 33.83 
1/48 66.12 130.88 70.76 

The second set of calculations illustrate that the condition number for the pre- 
conditioner defined in (3.3) can be bounded independently of large jumps in the 
operator coefficients. The data in Table 7.2 represent experimental results where 
Q is split into 4 x 4 x 4 subdomains. The coefficient a in (7.1) is defined as fol- 
lows: a222 = a333 = 105, a is a constant in the interval [0.1, 21.1] for the remaining 
subdomains. Here aijk is the operator coefficient in the subdomain with inte- 
ger coordinates i, j, k. The largest jump in the operator coefficient between two 
neighboring subdomains in this case is 106. For comparison, we have included the 
corresponding condition numbers for the case when a _1 in Q. Clearly, the results 
in Table 7.2 are in good agreement with Remark 3.2. 

Our final numerical example is a comparison of the performance of the inexact 
preconditioners (3.3) and (6.5) with Br,-(,) given by (6.9), and the exact method 
analyzed in [6]. The piecewise constant coefficient a in this case is defined according 
to the data for ,u in Example 3 in [6]. We note that the condition numbers for the 
exact method reported in Table 7.3 are better than the ones reported in Table 4.5 
in [6] due to the different scaling of the boundary form (cf. Remark 2.5, [6]). 
The data in Table 4.5, [6] are obtained when the boundary form is scaled by d-1 
whereas the results in Table 7.3 are obtained with the scaling h-1. Clearly, the 
exact preconditioner and the inexact method implemented by Algorithm 6.1 exhibit 
almost the same condition numbers which is in good agreement with Remark 6.2. 

Although the condition numbers reported for these two methods are better than 
those for Algorithm 5.1, one application of the inexact preconditioner (3.3) re- 
quires substantially less computer time thus resulting in a more efficient compu- 
tational algorithm. We illustrate this with some timing statistics made on a SUN 
Sparc 20/502 workstation. For mesh sizes between 1/12 and 1/48, the inexact pre- 
conditioner (Algorithm 5.1) was more than 4.5 times faster to evaluate than the 
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exact method which used the Fast Fourier transform to diagonalize the stiffness 
matrix. This translates into an overall factor of three reduction in computing time 
in the case of the grid with h = 1/48 and a problem solved by a preconditioned 
conjugate gradient iteration. A similar comparison of Algorithm 5.1 and Algorithm 
6.1 indicates that Algorithm 5.1 is about 25 percent more efficient. 
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